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Background

Amsterdam Airport Schiphol (AMS)

� 52 MAP in 2013

� 450,000 annual aircraft movements

� Large share of intercontinental flights 

with wide-bodies

Taxiway Pavement

� 200 mm polymer modified asphalt

� PG 76-22 SBS-modified binder

� 700 mm cement treated base

� Subgrade CBR 1-2

Recurring Surface Distresses

� Entry TWY A8 towards RWY 24

� Circulation TWY A at wide-body F-pier

� Both locations subject to high shear

� Multiple resurfacings executed
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Surface Distresses at Amsterdam Airport Schiphol
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Typical Examples
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Approach

1. Literature Review

2. Numerical calculation of stresses at pavement

surface

3. Check stresses against Mohr-Coulomb

4. Compare numerical results with analytical model

5. Identify critical failure parameters

6. Collect field data on asphalt performance 

characteristics
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Conclusions

1. Extreme but realistic combinations of tire pressure

and shear can cause surface cracking

2. Surface cracking is a strength issue and not a 

stiffness issue

3. Horizontal tensile stress at wheel edge is critical

4. Mixture cohesion is crucial to resist surface cracking

5. Cohesion drops with increasing temperature; hence

risk of surface cracking is highest at elevated

temperatures

6. ITS-test is simple test to determine cohesion
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Recommendations

1. Analytical model gives insight into sensitive parameters 

but requires further validation due to rapid change of 

tensile stress at wheel edge

2. Effect of non-uniform stress distribution is likely to

increase edge stresses, but has not been studied

3. Failure is defined by single loading event. Fatigue may

have to be considered

4. Interface condition between asphalt layers is a known

cause of surface cracking but has not been studied

5. Impact of non-circular contact area needs further study
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Failure as per Mohr-Coulomb

Fsr > 1

No Failure
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Fsr < 1
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Numerical Calculations
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Pavement Structure

Polymer Modified Asphalt

PG76-22 SBS-binder
200 mm

elastic / visco-elastic

c = 1 MPa, ϕ = 35°

Cement Treated Base 700 mm
linear elastic

E > 5,000 MPa

Sand Sub-Base 400 mm linear elastic

Combined E = 40 

MPaClayey Subgrade
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Numerical Calculations
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Loads
� Single wheels only. Multiple wheels � no interaction

� Uniform vertical and horizontal stress distribution over 
circular contact area

� Load characteristics:

Wheel Load Tire Pressure

19 t 0.86 MPa

19 t 1.45 MPa

25 t 1.54 MPa

30 t 1.75 MPa
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Numerical Calculations
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Results – Straight Moving Loads

� No risk of failure with 

straight moving loads, 

uniform stress and c = 1 

MPa
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Numerical Calculations
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Loads in Curves

� Standard taxiway curve 55 m centreline radius

� Wide-body mean gear (B777) = 35 m, 1.54 MPa tire pressure

� Horizontal shear by:

� σ = tire pressure [MPa]

� v = speed [km/hr]

� R = curve radius [m]

� τ = shear stress [MPa]

Speed Horizontal shear G-force

20 km/hr 0.14 MPa 0.09g

30 km/hr 0.31 MPa 0.20g

50 km/hr 0.85 MPa 0.56g

� � 7.87 ∙ 10	
 �
� 
 �

�
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Numerical Calculations
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Shear Stress Nomogram
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Numerical Calculations
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Results – Loads in Curves

� Tire Pressure = 

1.54 MPa

� R = 35 m

� Speed = 20 km/hr
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Numerical Calculations
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Results – Loads in Curves

� Tire Pressure = 

1.54 MPa

� R = 35 m

� Speed = 30 km/hr
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Numerical Calculations

15

Results – Loads in Curves

� Tire Pressure = 

1.54 MPa

� R = 35 m

� Speed = 34 km/hr
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Numerical Calculations
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Results – Loads in Curves

� Tire Pressure = 

1.54 MPa

� R = 35 m

� Speed = 50 km/hr
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Numerical Calculations
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Results – Loads in Curves

� Tire Pressure = 

1.54 MPa

� R = 35 m
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Numerical Calculations
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Results – Normal Pushback

� v = 10 km/hr

� R = 10 m
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Numerical Calculations
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Results – Lateral Wheel Slip

3m

< 5m

� Normal push-back at low speed and r > 10 m � No risk

� Extreme push-back, sharp steering angle � high risk with

(tri)tandem axles due to wheel slip
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Numerical Calculations
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Results – Lateral Wheel Slip

Fsr = 1.0 Fsr = 0.4

40% slip 80% slip
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Numerical Calculations

21

Summary
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Analytical Model
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� Gerrard and Harrison [1970]; Analytical model for stresses in 

uniform halfspace due to circular wheel load, also at z = 0 

and y = r.

� Take stress condition just outside wheel; σzz = τyz = 0

� Combine with Fsr failure model and take Fsr = 1
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Analytical Model
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Analytical Model
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Fit with Numerical Results

Reasonable fit at β = 0.6
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Mix Cohesion
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Proportional to ITS and Sensitive to Temperature

Mix Cohesion = 1.75 x ITS (Christensen, Bonaquist)
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Conclusions

1. Extreme but realistic combinations of tire pressure

and shear can cause surface cracking

2. Surface cracking is a strength issue and not a 

stiffness issue

3. Horizontal tensile stress at wheel edge is critical

4. Mixture cohesion is crucial to resist surface cracking

5. Cohesion drops with increasing temperature; hence

risk of surface cracking is highest at elevated

temperatures

6. ITS-test is simple test to determine cohesion
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Thank you for your attention!
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Download full report from:

http://www.crow.nl/publicaties/tire-

induced-surface-cracking-due-to-

extreme-wheel


